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Abstract 

Genome wide association studies (GWASs) have revealed several airway disease‑associated risk loci. Their role in the 
onset of asthma, allergic rhinitis (AR) or chronic rhinosinusitis (CRS), however, is not yet fully understood. The aim of 
this review is to evaluate the airway relevance of loci and genes identified in GWAS studies. GWASs were searched 
from databases, and a list of loci associating significantly (p < 10–8) with asthma, AR and CRS was created. This yielded 
a total of 267 significantly asthma/AR–associated loci from 31 GWASs. No significant CRS ‑associated loci were found 
in this search. A total of 170 protein coding genes were connected to these loci. Of these, 76/170 (44%) showed 
bronchial epithelial protein expression in stained microscopic figures of Human Protein Atlas (HPA), and 61/170 (36%) 
had a literature report of having airway epithelial function. Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotation analyses were performed, and 19 functional protein categories were found as signifi‑
cantly (p < 0.05) enriched among these genes. These were related to cytokine production, cell activation and adaptive 
immune response, and all were strongly connected in network analysis. We also identified 15 protein pathways that 
were significantly (p < 0.05) enriched in these genes, related to T‑helper cell differentiation, virus infection, JAK‑STAT 
signaling pathway, and asthma. A third of GWAS‑level risk loci genes of asthma or AR seemed to have airway epithe‑
lial functions according to our database and literature searches. In addition, many of the risk loci genes were immu‑
nity related. Some risk loci genes also related to metabolism, neuro‑musculoskeletal or other functions. Functions 
overlapped and formed a strong network in our pathway analyses and are worth future studies of biomarker and 
therapeutics.
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Background
Asthma, allergic rhinitis (AR) and chronic rhinosinusi-
tis (CRS) are multifactorial chronic airway diseases that 
share some common pathogenetic mechanisms. AR is 

caused by allergen binding to specific IgE in the nasal 
mucosa of a sensitized individual, leading to inflamma-
tion and symptoms of allergy. The prevalence of AR has 
increased in the Western countries over the last few dec-
ades and it nowadays has been estimated to affect up to 
10–25% of the population [1]. Asthma is a chronic pul-
monary disease with airway inflammation, bronchial 
hyperresponsiveness and recurrent, reversible airflow 
obstruction. Exacerbations are common both in asthma 
and in CRS, which is a chronic symptomatic inflamma-
tion of the sinonasal tract. Asthma and CRS both affect 
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about 3–10% of the Western population [2–4]. Risk fac-
tors for asthma, AR and CRS include genetic predisposi-
tion, other allergic diseases, infections and environmental 
factors including exposure to tobacco smoke and air pol-
lution [5–7].

Many of the environmental risk factors in the patho-
genesis of asthma and CRS are linked to disrupted inter-
play between epithelial barriers, particles, allergens and 
microbes [8, 9]. Type 2 biased inflammation with recruit-
ment of eosinophils, basophils, and T-cells, and release 
of cytokines is common in atopic asthma and AR [10, 
11]. Epithelial cells are in contact with microbes, which 
increasingly have been shown to have a role in inflamma-
tory diseases [12, 13]. Recent studies have also found that 
altered airway microbiome composition might be associ-
ated with asthma [14], seasonal AR [15–17], or children 
with rhinitis [18].

Genetic inheritance has been estimated to explain 
25–80% of asthma risk [19] and up to 90% of AR risk [20]. 
The genetic predisposition of CRS seems to vary accord-
ing to CRS type. Although an increased risk is associated 
with both types, the familial risk of CRS with nasal pol-
yps (CRSwNP) has been found significantly higher than 
that of CRS without nasal polyps (CRSsNP) in a popula-
tion based study conducted in Utah [21].

Large collaborative twin studies and GWAS pro-
jects have helped establishing genetic components for 
asthma, CRS and AR. Kim et  al. [22] summarized the 
results of 42 GWASs of asthmatic subjects and controls 
and asthma-related traits. The most replicated loci with 
genome-wide significant (p < 5 × 10–8) were the cluster 
of genes at the 17q12–21, including ORMDL3 (oroso-
mucoid-like 3), GSDMB (gasdermin B), and GSDMA 
(gasdermin A), specific to childhood-onset disease. The 
next three loci achieving significant p-values included 
loci 2q12 in the vicinity of several interleukin receptor 
genes, namely IL1RL1, IL1RL2, and IL18R1, a region 
on 5q22 that contains the mitochondrial solute carrier 
gene SLC25A46 and the hemopoietic cytokine gene 
TSLP and a complex region located within the major 
histocompatibility locus 6p21. While these multigene 
loci are challenging to dissect, it is notable that IL1RL1 
encodes the receptor for IL-33. The gene that encodes 
IL-33 is separately implicated in the genetic etiology of 
asthma through the fifth most replicated locus on chro-
mosome 9p24.

Like many other complex diseases, the development of 
asthma or AR requires genetic predisposition and appro-
priate timing of environmental exposures. GWASs have 
been able to identify and replicate several significant 
risk regions in large sample sets [10]. Among already 
known important asthma loci, GWASs have also revealed 

previously undescribed and unexpected genetic compo-
nents, highlighting the method’s freedom of preconcep-
tions [23].

Risk factors and pathogenetic mechanisms of aller-
gic diseases are also interrelated and share partly same 
mechanisms, which is why we took this broad approach. 
Our aim was to review GWASs identified asthma, AR 
and CRS related genes, and to evaluate their relevance 
in airway mucosal functions. This review is based on an 
extensive literature search, and several database searches 
(Fig. 1).

GWAS catalog‑search
The GWAS catalog containing 11,598 unique SNPs, 
was downloaded from the National Human Genome 
Research Institute (NHGRI) website (https ://www.ebi.
ac.uk/gwas/) on January 18, 2018. We created a list of 267 
SNPs associating significantly (p < 10 exp -8) with asthma 
and/or AR provided in the Additional file  1: Table  S1. 
There were no SNPs associating significantly with CRS. 
Gene symbols were mapped onto chromosomes by using 
Ensemble Karyotype viewer (https ://www.ensem bl.org/
Homo_sapie ns/Locat ion/Genom e) (Additional file  1: 
Table S1). Of these 267 SNPs, we selected the SNPs which 
were assigned to a protein coding gene or those reported 
to have a protein coding gene as the nearest gene [24]. 
Using this strategy, we identified a total of 170 protein 
coding genes (Additional file  1: Table  S2). Of them, 21 
genes were connected to several SNPs and/or identified 
in different studies. A Manhattan plot (https ://biore nder.
com/) of SNPs was generated (Fig. 2), showing that sus-
ceptibility genes were distributed to all chromosomes 
(except sex chromosomes). Several genes were found to 
locate in chromosomes 1, 5, 6, or 17.

Database and literature search of airway 
expression of the protein expressing genes
Information about the 170 protein coding genes in Gene 
Cards, NCBI Gene Expression Omnibus (GEOacces-
sion: GSE5057 and GSE40364), and Human Protein Atlas 
(HPA) (https ://www.prote inatl as.org/) was examined 
(Fig.  3). We also collected lung, bronchial, and naso-
pharyngeal expressions of these genes from the Genotype 
tissue expression portal (GTEx), expressed as Reads Per 
Kilobase Million (RPKM) (Additional file 1: Table S2).

Nasopharyngeal/bronchial protein expression informa-
tion was obtained from immunohistochemically stained 
photomicrographs of HPA, and the staining intensity 
was semiquantitatively scored as 0–3 (0 = no, 1 = mild, 
2 = moderate, 3 = strong staining). A total of 76/170 
(44%) of these genes showed bronchial epithelial protein 
expression and 69/170 (41%) showed nasopharyngeal epi-
thelial protein expression in stained microscopic figures 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ensembl.org/Homo_sapiens/Location/Genome
https://www.ensembl.org/Homo_sapiens/Location/Genome
https://biorender.com/
https://biorender.com/
https://www.proteinatlas.org/
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(Fig. 3a). The proportion of genes that did not have pro-
tein expression figures available was 55% in bronchial 
and 59% in nasopharyngeal region (Fig. 3a). All available 

stained microscopic figures showed airway expression, 
and when scoring semiquantitatively the staining inten-
sity, the proportion of genes showing moderate protein 

Fig. 1 Flow chart of the study. GWASs were searched from databases (https ://www.ebi.ac.uk/gwas/) and a list and database of SNPs associating 
significantly (p < 10–8) with asthma, AR and CRS was formed in 1/2018. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) annotation analysis was performed for protein coding genes connected to SNPs. Airway epithelial expression of genes and corresponding 
proteins were evaluated by using Gene Cards, Human Protein Atlas (HPA), and literature search from PubMed. Other potential airway functions 
of the selected set of genes were evaluated from database /literature search. Abbreviations: AR allergic rhinitis, CRS chronic rhinosinusitis, GO 
Gene Ontology, GWAS genome‑wide association study, HPA Human Protein Atlas, KEGG Kyoto Encyclopedia of Genes and Genomes, SNP single 
nucleotide polymorphism, TPM Transcripts Per Million

Fig. 2 Manhattan plot (https ://biore nder.com/) of the SNPs that were significantly associated (p < 5 × 10–8) with asthma/AR in GWASs

https://www.ebi.ac.uk/gwas/
https://biorender.com/
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expression intensity of all available figures was 68% in 
bronchial and 64% in nasopharyngeal regions (Fig.  3a). 
Similarly, the proportion of genes with overall expres-
sion was 45% in bronchial and 41% in nasopharyn-
geal mucosa (Fig.  3a). When evaluating the normalized 
expression values, e.g. transcripts per million (TPM) in 
HPA, 51/170 (30%) genes did not show data, 106/170 
(62%) genes showed TPM > 1 and 8% genes showed TPM 
value of < 1 (Fig. 3b). The exact TPM values are shown in 
the Additional files 1, 2: Tables S1 and S2. When evaluat-
ing Genotype-Tissue Expression (GTEx) from HPA, the 
expression levels for the vast majority of these genes were 
not available (Additional files 1, 2: Tables S1 and S2).

A systematic literature search in PubMed was per-
formed for the 170 protein coding genes, by using as 
search terms “Gene name (or any of its aliases) AND 
epitheli* AND airway/bronc*” and information of airway 
epithelial expression was scored as 0–2 (0 = no evidence 
of airway expression, 1 = maybe, 2 = yes/ubiquitous 
expression) (Additional files 1, 2: Tables S1–S2). A total 
of 25/170 (15%) genes showed little and 61/170 (36%) 
showed moderate to strong evidence of airway epithelial 
protein expression, whereas 49% of genes showed no/not 
known evidence of airway epithelial protein expression 
(Fig. 3c).

Functional annotation
We performed functional annotation of the identified 
genes by R, using a package called clusterProfiler (https 
://bioco nduct or.org/packa ges/relea se/bioc/html/clust 

erPro filer .html) (Fig. 4) [25]. The SNPs (Additional file 1: 
Table  S1) that were connected to the protein coding 
genes were used. If several SNPs were in/near to the same 
gene, only the first SNP of the list of the Additional file 1: 
Table  S1 was used in functional annotation. Noncod-
ing genes related to these asthma/AR -associated SNPs 
were excluded in functional annotation. Altogether, there 
was a total of 155 genes showing functional annotation 
(Fig. 4). We identified 19 Gene ontology (GO) categories 
(functional protein categories) that were significantly 
(p < 0.05) enriched among these genes, such as cytokine 
production, cell activation, leukocyte differentiation, reg-
ulation of cell adhesion, leukocyte proliferation, adaptive 
immune response, antigen receptor signaling pathway 
and regulation of inflammation response (Fig. 4a). Gene 
network analysis showed strong interaction between 
these GO-categories, indicating a strong regulation net-
work between the genes (Fig. 4b). We also identified 15 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways that were significantly (p < 0.05) enriched 
among the genes, such as Th17 cell differentiation, Th1 
and Th2 cell differentiation, Human T-cell leukemia virus 
1 infection, Inflammatory bowel disease, Epstein Barr 
virus infection, Tuberculosis, Hematopoietic cell line-
age, JAK-STAT signaling pathway, and asthma (Fig.  4c). 
JAK-STAT signaling pathway was the most significantly 
enriched pathway (Fig. 4c).

a b c

Fig. 3 Database and literature analysis of airway expression of the corresponding proteins of the protein coding GWAS‑level genes (n = 170) 
associating with asthma/AR. a Human protein Atlas (HPA) was used to search for photomicrographs of the proteins and their staining intensity 
was semi‑quantitatively evaluated by two observers. b HPA results of lung expression in Transcripts per million (TPM). c Literature search results of 
airway epithelial expression of these genes. Pubmed search was performed by using search terms “(Gene name OR alias) AND epitheli* AND airway/
bronc*”, Nasophar = Nasopharyngeal

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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Literature review
We finally ranked genes that were highly suggestive of 
having asthma/AR-relevant functions. The selection  
was performed based on (a.) the significance (p-value)  
of particular SNP in GWASs, or (b.) multiple replica-
tion of particular SNP or gene in GWASs, or (c.) large  
literature knowledge of airway function of a particu-
lar gene (Additional file  1: Table  S1). The selected list 
of genes is shown in bold text in Table  1. We searched 
expression knowledge from literature for this smaller  
set of genes and categorized the genes based on their 
potential function in the airways in four main groups: 
genes related to epithelial function, immunity function, 
neuro-musculoskeletal functions, and other functions. 
Although some functional groups overlap, genes are 
only reported in one functional group. In the following 
text we will discuss the most relevant genes we found in 
these searches. In Fig. 5 we summarize the main airway 

functions related to the genes we evaluated most relevant 
for functions in nasal mucosa during AR and in bronchial 
mucosa during asthma.

Epithelial function—related genes
CHI3L1 (Chitinase-3-like protein 1) gene encodes chi-
tinase like protein (YKL-40), which is involved in inflam-
mation and tissue remodeling [26]. A study combining 
GWAS with serum YKL-40 measurement, involving 
632 members of the Hutterite population of European 
decent (living in South Dakota) (age range 6–92  years; 
asthma in 11.5%, atopy in 41.2%), have shown CHI3L1 
(SNP rs4950928, -131C- > G) to be a susceptibility gene 
for asthma, bronchial hyperresponsiveness, and reduced 
lung function [27]. Elevated circulating YKL-40 levels 
have been shown to be a biomarker for asthma [27, 28], 
they have been shown to correlate with asthma severity, 

a
b

c

Fig. 4 Functional annotation of the genes corresponding to the SNPs that were significantly associated with asthma/AR in GWASs. We used the 
whole list of SNPs (Ensemble codes) shown in the Additional file 1: Table S1. Of these, only SNPs that were connected to protein coding genes 
were used in this analysis, and only one unique gene associated with one or several SNPs were used. Noncoding genes related to these asthma/AR 
‑associated SNPs were excluded in functional annotation. The total number of genes of this functional annotation was 155 genes. a Gene ontology 
(GO) categories (functional protein categories) that were enriched. b Gene function network interaction of the GO‑categories. The network 
interaction shows strong interaction between the GO‑categories and indicating regulation functions between each other. c Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways enriched among 155 genes. Shades of blue and red indicate significance of the enrichment (all were 
significant at level p < 0.05), and the size of the dot represents gene count. X‑axis represents the number of genes belonging to the particular 
category / total number of observed genes (N = 155)
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thickening of subepithelial basement membrane, and 
inversely with lung function [26].

CDHR3 (Cadherin related family member 3) gene is a 
transmembrane protein with six extracellular cadherin 
domains [29]. Cadherins are highly expressed in airway 
epithelium, and are involved in cell adhesion, epithelial 
polarity, cell–cell interactions and differentiation [29]. 
CDHR3 is expressed in FOXJ1-expressing ciliated cells, 
which are also the targets of Rhinovirus C (RV-C) bind-
ing [30]. GWAS was performed for blood samples of 
1173 Danish children (2–6  years) with recurrent acute 
hospitalizations for asthma, and CDHR3 (SNP rs6967330; 
p.Cys529Tyr) has been identified as a susceptibility gene 
for early childhood asthma with severe exacerbations 
[29, 31]. Since asthma exacerbations are often caused by 
infections, it is possible that CDHR3 variations increase 
susceptibility to infections, and exacerbations, because of 
disrupted epithelial integrity [31].

Chromosome 17q21 is an area of interest for asthma 
and contains a cluster of genes linked to asthma in sev-
eral GWAS studies, including the GSDMB (Gasdermin 
B) and IKZF3 (Ikaros family zinc finger protein 3) genes 

[32]. Chromosome 17q21 has also been linked to inflam-
matory bowel disease, primary biliary chirrosis, and type 
1 diabetes mellitus [32, 33].

Gasdermin A (GSDMA) and B (GDSMB) belong to 
a family of pore-forming proteins, causing membrane 
permeabilization and pyroptosis, which is a lytic pro-
inflammatory cell death type [34]. Gasdermins are 
involved in inflammation and cell death, in several here-
diatry diseases, auto-inflammatory diseases and cancer 
[34]. GSDMB is highly expressed in ciliated airway epi-
thelial cells [35]. Associations have been shown between 
GSDMA gene and asthma [36, 37] and, between GSDMB 
gene and asthma [38] or early childhood asthma with 
severe exacerbations [39]. Moffat et  al. 2010 found an 
independent association with childhood-onset asthma 
and GSDMA gene (rs3894194, G-> A) in their large con-
sortium-based GWAS of asthma in children and adults 
from several different populations [36]. Ferreira et  al. 
2014 found in their GWAS meta-analysis including chil-
dren and adults from different populations, that GSDMA 
gene (rs7212938, G) was associated with risk of asthma 
without hay fever (OR 1.14, 95% CI 1.07–1.22) and less 

Table 1 The list of  all reported genes associating with  asthma/AR/CRS GWAS SNPs at  the  level of  P < 10 exp ‑8. The 
reviewed genes are shown in bold 

Chr Genes

1 SFPQ, ZMYM4, RUNX3, RERE, TNFRSF14, FAM213B, C1orf54, MRPS21, FLG, IL6R, RORC, RPTN, HRNR, PYHIN1, DARC , FCER1A, OR10J3, NDUFS2, FCER1G, 
CD247, FASLG, TNFSF18, TNFSF4, CRB1, DENND1B, CHI3L1, ITPKB

2 ASB3, SOCS, JUND, CEBPB, IL18R1, IL1RL1, IL1RL2, BCL2L11, ANAPC1, IL1B, KYNU, ARHGAP15, PLCL1, IKZF2, CCL20, DAW1, INPP5D, D2HGDH

3 RYBP, GLB1, IL5RA, ABI3BP, FAM172B, TRMT10C, SLC15A2, GATA2, RASA2, BCL6, LPP, DLG1, FBXO45, CEP19

4 TLR1, TLR6, TLR10, STX18, MSX1, SRIP1, GC, MANBA, ADAD1, IL2, IL21, GAB1

5 DAB2, PTGER4, IL7R, FBXL7, FAM105A, PDE4D, TMEM232, SLC25A46, TSLP, WDR36, CAMK4, TNFAIP8, C5orf56, IL13, RAD50, IL5, DIAPH1, NDFIP1, 
LMAN2, RGS14

6 GRM4, HGMA1, ITPR3, BTNL2, C6orf10, HLA-DPB1, HLA-DOA, HLA-DPA1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, BTNL2, NOTCH4, PBX2, HLA-B, 
MICA, HLA-C, NCR3, AIF1, PSORS1C1, TNXB, CREBL1, HLA-A, HLA-G, HLA-J, BACH2, ATG5, PTPRK, TNFAIP3, ARID1B, RNASET2

7 C7orf72, IKZF1, JAZF1, NPY, FERD3L, ITGB8, ABCB5, GSAP, CDHR3
8 TUSC3, ZBTB10, TPD52, SLC30A8, MYC
9 EQTN, TEK, MOB3B, JKAMPP1, TYRP1, JAK2, RANBP6, IL33, PHF19, TRAF1, C9orf114, LRRC8A, PTGES

10 GATA3, SFTA1P, AKR1E2, IL2RA, ZNF365, JMJD1C, REEP3, PSAP, HPSE2, C10orf95, ACTR1A, TCF7L2

11 DBX1, NAV2, HTATIP2, PRMT3, AP5B1, OVOL1, WNT11, LRRC32, C11orf30, SESN3, FAM76B, LAYN, SIK2, DDX6, CXCR5, KIRREL3-AS3, ETS1

12 HDAC7, AQP2, CDK2, SUOX, IKZF4, STAT6, NAB2, ATXN2, SLC22A5, C12orf65, CDK2AP1, SPPL3, HNF1A-AS1

13 FOXO1, PIBF1, KLF5

14 PSMA6, FOXA1, TTC6, RAD51B, JDP2, BATF, RCOR1, TRAF3

15 RTF1, ITPKA, RORA, SMAD3, IQGAP1

16 CLEC16A, RMI2, LITAF

17 SMTNL2, ALOX15, GRB7, GSDMA, GSDMB, CRKRS, ORMDL3, PERLD1, IKZF3, PNMT, PSMD3, ZPBP2, CCR7, SMARCE1, STAT5B, MAP3K14, ARHGAP27, 
ZNF652

18 LPIN2, DYNAP, RAB27B, TNFRSF11A

19 SLC7A10, CEBPA, , ZNF614, ZNF841, ZNF432,  ZNF776

20 NFATC2, ZNF217, RTEL1

21 RUNX1, SIK1

22 IL2RB, TEF, TOB2
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with risk of hay fever without asthma (OR 1.02, 95% CI 
0.98–1.06), suggesting that it is a stronger risk factor for 
asthma than hay fever [37].

The GSDMB gene (rs11078927, C-> T) has been linked 
with asthma by Torgerson et al. 2011, in a GWAS meta-
analysis including children and adults from different pop-
ulations [38]. Also Bønnelykke et al. 2014, linked GSDMB 
gene (rs2305480, G) with early childhood asthma with 
severe exacerbations in their GWAS of Danish children 
[39].

A large GWAS of European 180,129 adults/children 
with asthma and/or AR and/or eczema and 180,709 
healthy controls showed that GSDMB gene (rs921650 A) 
is a stronger risk factor for asthma or hay fever than for 
eczema [40]. A meta-analysis of GWASs of self-reported 
pollen, dust-mite or cat allergy of 22 012 allergic subjects 
and 31  850 healthy controls showed that GSDMB gene 

(rs9303280, T-> C) was most strongly associated with 
asthma [41]. A meta-analysis of GWAS of 2144 asth-
matic Puerto Ricans and 2893 healthy controls (adults & 
children) found GSDMB gene (rs2305480, G—> A and 
rs11078927, C—> T) to be associated with asthma [42]. 
GSDMB was highly expressed in nasal epithelial brush-
ings of Puerto Rican children [43], and in primary bron-
chial epithelium of asthmatic lung [44]. A Dutch GWAS 
included 920 physician diagnosed asthmatic subjects with 
bronchial hyperresponsiveness and 980 healthy controls, 
from northern Netherlands, both children and adults. 
They compared the GWAS results to prior GWASs, 
and also performed lung tissue eQTL analysis of the top 
SNPs replicated in the GWAS analysis [45]. The 17q21 
locus achieved genomewide significance, with GSDMB 
(rs8067378, G; rs2305480, A; rs2290400, C; rs7216389, 
C), also in eQTL analysis, GSDMB showed larger effect 
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sizes compared to prior published literature [45]. Exactly 
how gasdermins affect asthma risk remains unknown, 
membrane permeabilization and pyroptosis may have an 
effect in this [35]. When GSDMB protein is cleaved by 
inflammatory caspase-1 to release its N-terminal frag-
ment, potent pyroptotic cell death had been shown to be 
induced in airway epithelial cells [35]. There is some evi-
dence that a GSDMB splice variant, associated with lower 
asthma risk, causes an exon deletion leading to GSDMB 
protein losing its ability to induce pyroptosis in airway 
epithelial cells, possibly reducing asthma risk [35].

Ikaros family zinc finger protein 3 (IKZF3)s are 
 transcriptional factors involved in lymphocyte differ-
entiation [46] and are expressed in human airway epi-
thelial cells [47]. In a GWAS of Dutch asthmatics with 
bronchial hyperresponsiveness, IKZF3 (rs9303277, T) 
was one of the top findings, and also significant in the 
lung tissue eQTL analysis [45]. In the meta-analysis of 
GWAS of asthma in Puerto Ricans (children and adults), 
the only locus that achieved genome-wide significance 
for asthma risk was IKZF3, (rs907092) at chromosome 
17q21 [42]. IKZF3´s role in asthma pathogenesis is 
unknown.

Zinc finger proteins are involved in many cellular pro-
cesses, and in the development and differentiation of 
several tissues [48–50]. They are involved in tumorigen-
esis, cancer progression and metastasis formation e.g. in 
breast cancer, but can also act as tumor suppressor genes, 
and are also involved in neurodegeneration, skin dis-
eases (e.g. psoriasis) and diabetes mellitus [48–50]. In the 
large GWAS of broad allergic disease phenotype (asthma 
and/or hay fever and/or eczema) by Ferreira et  al. [20], 
ZNF217 (Zinc Finger Protein 217) gene was one of the 
identified loci containing genetic risk variants indepen-
dently associated with the risk of allergic disease [40]. In 
a GWAS study of Caucasian asthmatic children of which 
172 were treated with budesonide and 409 with placebo 
or nedocromil, the ZNF432 gene (rs3752120, T—> C) 
variants were associated with inhaled corticosteroids 
modulating bronchodilatator response, also ZNF614 
(rs2288884, rs3450) and ZNF841 (rs12460587, G-> T, 
rs3450) were closely associated [51].

Filaggrin (FLG) is a protein that is critical for keratini-
zation and epithelial barrier homeostasis [52]. Filaggrin 
gene defects are known to increase the risk of allergic 
sensitization, atopic eczema and AR [53]. It is the most 
important genetic risk factor for atopic dermatitis [52, 
54]. A GWAS of 1563 European children with physician 
diagnosed asthma and 4054 controls and a replication 
analysis showed that, the risk for asthma caused by FLG 
variants (R501X and 2282del4) is limited to asthma cases 
with co-existing atopic dermatitis [55]. OVOL1 gene 
encodes a putative zinc finger containing transcription 

factor that is highly similar to homologous protein in 
Drosophila and mouse. OVOL1 regulates FLG expression 
in atopic dermatitis subjects [56], and in normal human 
epidermal keratinocytes [57]. It has been suggested that 
FLG mutations might be involved in barrier dysfunction 
leading to e.g. asthma. However, in immunohistochemi-
cal analysis, filaggrin was not found to be expressed in 
normal upper airway epithelium in a disagreement with 
this theory [58].

Toll-like receptors (TLRs) are expressed in nasal epi-
thelium [59], and they have an important innate immu-
nity function recognizing external pathogens and 
activating immune responses [41]. Nasal epithelial TLR 
gene expression levels were not remarkably altered after 
nasal birch pollen challenge [59] although a decrease in 
nasal epithelial TLR1 and TLR6 protein expression was 
detected in birch pollen allergic adults after challenge 
[59]. In the meta-analysis of GWASs that have been per-
formed on both children and adult populations with self-
reported allergy, the found shared susceptibility loci with 
asthma included (rs2101521, A-> G) chromosome 4p14 
near TLR1, TLR6 and TLR10 [41]. In the meta-analysis 
of GWASs of children and adults with asthma and hay 
fever, and controls, TLR1 (rs4833095, T) was associated 
with the risk of asthma with co-existing hay fever [37]. 
The TLR1 gene was also found to be one of the identified 
loci containing genetic risk variants independently asso-
ciated with the risk of allergic disease in the large GWAS 
of broad allergic disease phenotype (asthma and/or hay 
fever and/or eczema) by Ferreira et al. [40].

SMAD family member 3 (SMAD3) is a transcriptional 
modulator activated by TGFβ and it may regulate home-
ostatic and healing pathways to epithelial damage [36]. 
Mice with SMAD3 deficiency have increased amounts 
of proinflammatory cytokines in their lungs [60]. The 
GWAS by Moffat et  al. showed an independent asso-
ciation between asthma and the SMAD3 SNP (rs744910, 
G-> A) [36]. In two GWAS meta-analyses, SMAD3 SNP 
(rs17228058, A-> G) was a susceptibility locus of asthma 
and self-reported allergy [41] and, asthma with co-exist-
ing hay fever, but not asthma alone [37].

The role of epithelial to mesenchymal transition (EMT) 
has a critical role in airway remodeling. Human eosino-
phils co-cultured with bronchial epithelial cells induced 
EMT, suggestive of their role in airway remodeling, with 
increased expression of TGFβ1 and SMAD3 phosphoryl-
ation in the bronchial epithelial cells [61].

ITGB8 gene encodes Integrin Subunit Beta 8. This 
protein noncovalently binds to an alpha subunit to form 
a heterodimeric integrin complex. In general, integrin 
complexes mediate cell–cell and cell-extracellular matrix 
interactions and this complex plays a role in human air-
way epithelial proliferation. High expression levels of 
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ITGB8 have been associated with high angiogenic and 
poorly invasive glioblastoma tumors. Inactivation of 
ITGB8 in the murine airway has been associated with a 
reduction in IL-1β–induced airway inflammation and 
fibrosis, which is due to decreased TGF-β activation [62].

Immunity function–related genes
Immunity related SNPs in asthma are mostly in genes 
linked to HLA region and type 2 inflammation. The 
region 6p21 (HLA region) is one of the most replicated 
asthma loci [22]. Several significant SNPs have been 
associated with class II major histocompatibility antigen 
(HLA-DR) genes including HLA-DQA1, HLA-DQA2 and 
HLA-DQB1 [38]. They play a central role in the immune 
system by presenting peptides derived from extracellu-
lar proteins. Class II molecules are expressed in antigen 
presenting cells, ie. B lymphocytes, dendritic cells and 
macrophages and are extensively studied because of the 
association with several autoimmune, infectious and 
inflammatory diseases [63].

Group-specific Component (GC) gene [also known as 
Vitamin D-binding protein (VDBP) gene] on chromo-
some 4q13 and has been found to associate with asthma 
in children [64]. The rs7041 G-allele was found with 
increased risk [OR 2.15, CI 95% (1.32–3.50; P = 0.002)] 
of asthma in codominant, dominant, recessive and allelic 
models [64]. VDBP carries circulating vitamin D to the 
target organs, it is a chemotactic factor for leukocytes 
and macrophage activation, and also has a role in osteo-
clast activation [64, 65].

Approximately half of the patients with asthma, regard-
less of the severity of the disease, exhibit type 2 endotype. 
The endotype is characterized by a predominant activa-
tion of Th2 cells that produce cytokines such as interleu-
kins 4, 5, and 13.  These interleukins are responsible of 
Th2 cell differentiation, maturation and release of eosino-
phils and proliferation of IgE-producing B-cells, respec-
tively [66]. IL-25, IL-33 and TSLP are thought to be 
master regulators of type 2 inflammation in diseases and 
they can all activate innate and adaptive immune cells to 
secrete IL-5 and IL-13 [67].

Interleukin 1 receptor like 1 (IL1RL1, ST2) is an impor-
tant asthma gene and part of a cytokine receptor gene 
cluster. GWASs have reproducibly found the IL1RL1 
gene to be associated with asthma susceptibility [22]. 
IL1RL1 encodes different isoforms of the receptor: 
IL1RL1-a is a soluble form and IL1RL1-b is a transmem-
brane receptor. IL1RL1-a functions as a decoy receptor to 
dampen IL-33 induced signaling. IL1RL1-b together with 
IL1RAcP forms a heterodimeric transmembrane receptor 
for its ligand, IL-33. Binding of IL-33 initiates an MyD-
88-mediated signaling cascade, releasing pro-inflam-
matory cytokines IL-4, IL-5 and IL-13 [68]. IL-33-ST2 

(IL-1RL1) axis has been regarded as one of the key play-
ers also in allergic diseases, asthma and atopic dermati-
tis [69]. A number of studies have indicated that IL-33 
induces the activation and expansion of group 2 innate 
lymphoid cells (ILC2s) which cause allergic inflammation 
by producing large amounts of IL-5 and IL-13 [70]. As 
IL-5 is the main component of eosinophil activation and 
survival, anti-IL-5 treatments are used to inhibit eosino-
philic inflammation. At the moment, three biologics 
targeting IL-5 signaling are available: mepolizumab and 
reslizumab, which bind to IL-5 directly reducing the pro-
duction and survival of eosinophils, and benralizumab, 
which targets the IL-5 receptor expressed on eosinophils 
causing a direct destruction of the cell type [71]. Many 
functional studies of asthma have focused on peripheral 
blood mononuclear cells, yet there are also some studies 
on granulocyte functions: a study has showed that per-
sistent high blood neutrophilia was associated with poor 
asthma control [72].

Region 9p24 also belongs to one of the most replicated 
asthma loci, associating with the IL-33 gene. Being one 
of the major upstream regulators of type 2 inflammation, 
IL-33 has been linked to both asthma and allergic inflam-
mation. It also functions as an”alarmin” and is secreted 
following tissue damage caused for example by an infec-
tion [68]. IL-33 expression in the lungs is increased in 
asthma [73]. A recent publication describes a rare loss-
of-function mutation in IL-33, protecting from asthma 
[74]. Recently, a biologic recombinant protein called IL-
33trap was shown to neutralize IL-33 and inhibit acute 
allergic airway inflammation in a mouse model [75]. 
Clinical trials are ongoing with several monoclonal anti-
bodies targeting IL-33/ST2 signaling [76].

IL-13 is a cytokine secreted by activated Th2 cells, and 
acts as an important mediator of allergic inflammation 
pathogenesis. It shares a common receptor subunit with 
IL-4, namely IL-4Ralpha, therefore sharing also many 
functions with it, including promoting B-cell prolifera-
tion and class switch to IgG4 and IgE [77]. Dupilumab, 
a biologic targeting this common receptor subunit, has 
been shown to be effective in many allergic diseases 
including asthma, atopic dermatitis [78] and CRSwNP 
[79]. Some functions of IL-13 are independent of IL-4, 
and especially mucus hypersecretion, subepithelial fibro-
sis and stimulation of matrix metalloproteinases result-
ing in emphysematous changes in mouse model has been 
shown to result from the functions of IL-13 [80, 81]. A 
recent study investigated the association of 236 candi-
date gene polymorphisms and asthma disease severity, 
and found only one marker, the rs848 in the IL-13 gene 
region, significantly associating with symptom severity in 
adults with asthma [82].
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TSLP (thymic stromal lymphopoietin) gene encodes a 
cytokine that is expressed mainly in epithelial cells and 
plays a key role in allergic inflammatory responses [83]. 
In humans, dendritic cells are the major target for TSLP, 
having an integral role on promoting Th2 cell responses. 
TLSP is produced by the airway epithelium in response 
to inhaled allergens and proinflammatory stressors and 
has an upstream role in the asthma cascade [83]. Tezepe-
lumab binds to TSLP, inhibiting its stimulating activity 
on dendritic cells and innate lymphoid cells thus pre-
venting the induction of type 2 cytokines IL-4, IL-5 and 
IL-13. Anti-TSLP treatment with tezepelumab decreased 
asthma exacerbations significantly [84] and phase 3 trials 
are ongoing.

The expression and production of Th2 cytokines IL-4, 
-5 and -13, have been shown in isolated cell systems and 
invertebrates to be controlled by the zinc finger tran-
scription factor GATA3, which is essential for Th2-cell 
differentiation and activation and is considered to be 
the master transcription factor of the Th2 pathway of 
immune activation [85].  GATA3+ Th2 cells have been 
observed in specimens from bronchoalveolar lavage and 
lung biopsies obtained from patients with severe asthma, 
even after continuous per oral corticosteroid [86]. CD2-
Gata3 transgenic mice developed allergic airway inflam-
mation and showed enhanced levels of IL-5 and IL-13 
in bronchoalveolar lavage and lung tissue after allergen 
induction [87]. A novel therapy for the treatment of Th2-
driven asthma targeted GATA3, a transcription factor 
that plays a key role in Th2 cell differentiation, through 
an inhaled DNA enzyme (DNAzyme) that specifically 
cleaves and inactivates GATA3 mRNA. In a study of 
allergic asthmatic patients with sputum eosinophilia and 
biphasic early and late asthmatic responses after allergen 
provocation, inhalation of GATA3-specific DNAzyme 
once daily for 28 days attenuated both early and late asth-
matic responses to allergen provocation when compared 
with placebo [88].

The protein encoded by STAT6 gene is a member of  
the signal transducer and activator of transcription 
(STAT) family of transcription factors. In response to 
cytokines IL-4 and IL-13, STAT6 is phosphorylated by 
the receptor associated kinases, and then form homo- or 
heterodimers that translocate to the cell nucleus where 
they act as transcription activators for a large number of 
genes involved in macrophage polarization [89]. STAT6 
has been demonstrated to regulate many characteris-
tic features of lung inflammation common in asthma, 
including airway eosinophilia, epithelial mucus produc-
tion, Th2 cell differentiation, and IgE production from B 
cells [90].

On chromosome 17q21, two intergenic variant SNPs 
between CCR7 and SMARCE1 associate with high 

p-value in GWAS reported by Ferreira et al. [40]. As men-
tioned above, the locus 17q21 is the most replicated in 
asthma GWASs, including many other important asthma 
genes such as ORDLM3 and GSDMB [22]. The c–c-motif 
chemokine receptor CCR7 is a member of the G protein-
coupled receptor family. It is responsible for the proper 
recruitment of lymphocytes and mature dendritic cells 
to lymphoid tissues. Dendritic cells, T-lymphocytes and 
B-lymphocytes express CCR7 on their surface, and it has 
been shown to promote the internalization of antigens 
by DCs, and to regulate cell survival, migration, and to 
induce dendritic cell maturation [91, 92]. Recent study 
investigated the effects of CCR7 knockdown and over-
expression on dendritic cell-mediated immune tolerance 
in the lungs of rats with allergic asthma and found that 
CCR7 expression levels affected the expression of various 
cytokines such as IL-12, IL-4, IFN-γ and IgE, as well as 
the amount of immune cells in the lungs [93].

FCER1A (Fc fragment of IgE receptor 1A), an initia-
tor of the allergic response, is located on chromosome 
1q23, next to OR10J3 coding for an olfactory receptor, 
and showing more evidence on association. Variants in 
FCER1A has been reported to associate with total IgE 
levels, allergic sensitization [94] and atopy [95]. Associa-
tion of FCER1A polymorphism with CRSwNP has been 
studied in North Indian population-based case–control 
study [96]. Although no significant association was found 
with CRSwNP alone, a significant association (P < 0.05) of 
rs2427827 SNP with high IgE level CRSwNP patients was 
revealed [96]. FCER1A has been shown to be expressed 
in mast cells and basophils as well as in monocytes and 
dendritic cells, and it has been suggested to have a dual 
role in IgE-signaling – studies conducted using trans-
genic mouse models have shown that on one hand, 
FCER1A expression induces type 2 inflammation in the 
lungs after viral infection, on the other hand it has been 
linked to regulatory role in asthma, promoting immune 
homeostasis (reviewed in [97]).

ADAD1—IL-2/IL-21: Hinds et  al. report a SNP 
rs4145717-T in the 4q27 region that falls in the ADAD1 
gene, but the nearby IL-2 and IL-21 genes show more 
evidence on association [41]. In this region is another 
SNP associated with allergic rhinitis [98]. The IL-2 and 
IL-21 cytokines are involved in the regulation of multiple 
helper T cell types: IL-21 is needed for germinal center 
formation by generation of T follicular helper cells [99] 
and IL-2 is required for Th1, Th2 and Th17 cell differen-
tiation [100].

Neuro‑musculoskeletal function–related genes
C11orf30-LRRC32 region has been associated with 
asthma in previous studies [22]. LRRC32 (also known as 
GARP, glycoprotein A repetitions predominant) (11q13) 
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is expressed especially in lung and placenta and consid-
ered to be involved in several processes. It is a surface 
molecule of T regulatory cells [101] and earlier found in 
association to atopic dermatitis and induction of toler-
ance. C11orf30/EMSY is a transcriptional factor associat-
ing with tumor suppressor BRCA2, and it has been linked 
to above-mentioned TSLP activation in eosinophilic 
esophagitis [102]. In a multicenter population-based 
study, C11orf30-rs2155219 was  reported to double the 
risk of polysensitisation [103]. Polysensitisation is asso-
ciated to asthma [104]. C11orf30/EMSY has also been 
found a risk locus for both peanut and food allergy [105].

MYC encodes a transcription factor and located in 
the chromosome 8q24. MYC is a proto-oncogene and 
involved in Burkitt lymphoma and multiple myeloma and 
serves as a prognostic factor in acute myeloid leukemia 
[106]. A study showed that asthmatics have increased 
MYC expression in peripheral blood ILC [107]. They 
deleted c-Myc from murine lung ILC2 or an ILC2 cell line 
by CRISPR knockout, and showed reduced proliferation, 
decreased cytokine production, and reduced expres-
sion of many lymphocyte activation genes. In murine 
model of airway epithelial injury, Myc regulated prolif-
eration and Fibroblast growth factor expression in airway 
smooth muscle [108].

Chromosomal area 6p21 (within the major histocom-
patibility complex gene) also includes Tenascin XB gene 
(TNXB) which is a member of tenascin family and extra-
cellular matrix glycoproteins, and has musculoskeletal 
functions [55]. Tenascins are considered to be anti-adhe-
sive and associated to wound healing, they have also been 
associated to Ehlers-Danlos syndrome and to malignant 
mesothelioma and are considered to be involved in air-
way remodeling in asthma [109]. Also the pre-B-cell leu-
kemia homeobox  2 (PBX2) gene (rs204993), located in 
6p21, is associated to both asthma and AR in Chinese 
population [110]. PBX2 is expressed particularly in epi-
thelium [110].

PSMD3 (chromosome 17q21) is a multicatalytic pro-
teinase complex for proteasome and are distributed in 
many cells and have been reported to associate to atopic 
march and to atopic eczema and wheeze [111].

RAD50 (chromosome 5q31) is expressed in many tis-
sues and needed for DNA double-strand break repair 
and other activities essential for cell growth. Further, it 
has been reported to associate with atopic dermatitis in 
Korean population [112]. RAD50 has been shown to be 
expressed both in bronchial epithelial cells and bronchial 
alveolar lavage. However, IL13, locating in the same chro-
mosomal region, showed more evidence on association 
with asthma [113].

RORA (chromosome 15q) is expressed especially in 
skin and adrenal gland and to less extent other tissues 

and is a member of NR1 subfamily of nuclear hormone 
receptors interacting in organogenesis and circadian 
rhythm [114]. Seven RORA SNPs were associated with 
childhood asthma in European populations, and RORA 
show epistasis with NPSR1 [115]. The group showed in 
cell models that stimulation of NPSR1 activated RORA-
relevant pathway [115], and that NPS induced RORA 
mRNA expression in neuroblast cell line [116].

The RUNX gene family encodes Runt-related transcrip-
tion factors RUNX 1, 2 and 3. RUNX3 (1p36) is expressed 
especially in bone marrow, lymph nodes and spleen and 
is involved in activating or suppressing transcription 
and is associated to tumor suppressor. RUNX3 has been 
found to be hypomethylated and with increased asso-
ciation to inner city asthma in children [117]. RUNX1 is 
associated with aberrant B cell maturation and is related 
to acute myeloid or chronic leukemia [118]. Our study 
group showed that association between maternal smok-
ing exposure and incident asthma in adult offspring was 
accentuated in offspring who had haplotype rs11702779-
AA of RUNX1 gene [119].

WDR36 (chromosome 5q22) encodes a member of the 
WD repeat protein family, involved in many cell func-
tions e.g. signal transduction and apoptosis, and it has 
been associated with asthma and allergy [120–122]. In 
recent candidate gene analysis in Han Chinese popu-
lation, it has been shown to associate with AR [123]. 
In  vitro- studies show the involvement of WDR36 in 
 Gq-coupled muscarine, bradykinin and histamine recep-
tor signaling [124], all of which are important modulators 
of allergic reactions and asthmatic bronchoconstriction.

Other function–related genes
The Solute Carrier family members belong to the mito-
chondrial transporter family, which have an important 
role in metabolism [125]. The tissue distribution and cel-
lular/subcellular expression of SLC25A46 (Solute Car-
rier family 25 member 46) is ubiquitous [125]. A GWAS 
meta-analysis of 3933 European adults with allergic rhi-
nitis and 8965 controls, and 2315 subjects with grass 
sensitization and 10  032 controls showed that a vari-
ant (rs2155219) located close to SLC25A46 was associ-
ated with AR/grass sensitization [98]. The large GWAS 
of broad allergic disease phenotype (asthma and/or hay 
fever and/or eczema) by Ferreira et  al. [40] identified 
also SLC25A46 as one of the identified loci containing 
genetic risk variants independently associated with the 
risk of allergic diseas. A GWAS including Japanese and 
Korean pediatric asthma patients and controls, identi-
fied SLC30A8 (Solute Carrier Family 30 member 8) SNP 
(rs3019885—> T/G) to associate strongly with pediatric 
asthma. SLC30A8 is also known as Zinc Transporter 8, it 
is a zinc efflux transporter, highly expressed only in the 
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pancreas, its variants are associated with diabetes melli-
tus type 2 [126]. It is not known how the Solute Carrier 
family members affect the risk of asthma.

LPP (Lipoma-preferred partner) is a member of a 
protein family regulating cytoskeletal organization, cell 
motility and mechanosensing and functions as a media-
tor of transforming growth factor β (TGFβ) induced 
cell migration and invasion in breast cancer cells [127]. 
A study group has found that the LPP gene (rs9860547, 
G-> A) is a shared susceptibility locus of asthma and 
self-reported allergy, with the risk allele being protective 
against allergy in the meta-analysis of GWASs, in chil-
dren and adults with self-reported allergy and controls 
[41]. The study group also performed eQTL analysis, the 
results of which suggested that the LPP gene association 
may be mediated by an effect on BCL6 (B cell lymphoma 
6) expression affecting STAT6-mediated responses on 
IL-4, IL-13, and IgE class switching [41].

Elevated sputum PSORS1C1 (Psoriasis Susceptibility 1 
Candidate 1) levels have been shown in chronic obstruc-
tive pulmonary disease (COPD) [128]. Pyrin and HIN 
domain family member 1 (PYHIN1) is related to initia-
tion of innate immune response via detection of foreign 
DNA and, PYHIN1 was shown to positively regulate LPS-
induced IFN-β and NO production through up-regulat-
ing the MyD88-independent signaling pathway in murine 
macrophage cell model [129]. Aquaporins (AQPs) medi-
ate fast transmembrane transport of water thus regulat-
ing fluid balance in the organs [130]. AQP2 gene encodes 
kidney´s water channel protein and it mediates urine 
water concentration and regulates water balance [130]. 
A mouse model showed that a Chinese herb, Platycodon 
root, by diffusing the lung can ameliorate the respira-
tory-function and pathologic changes in the lung tissues, 
but also regulate urinary output and renal expression of 
AQP1 and AQP2 [130].

PLCL1 (Phospholipase C-Like 1) is involved in an ino-
sitol phospholipid-based intracellular signaling cascade 
[41]. It has been reported to be related to Circadian 
entrainment [131] and Crohn’s disease [41]. ABI3BP 
(ABI Family Member 3 Binding Protein) is a extracellu-
lar matrix protein and is expressed in multiple organs, 
including the heart, kidney, lung, pancreas, and placenta, 
with low-level or variable expression in the spleen, liver, 
brain, bone, and skeletal muscle [132]. ABI3BP gene 
has been shown to contribute emphysema phenotype 
in a mouse model that were exposed to cigarette smoke 
[133]. On the other hand a study showed that knockout 
of Abi3bp in mice does not affect their olfactory function, 
mental state and NNK-induced lung tumorigenesis [134]. 
AP5B1 (Adaptor Related Protein Complex 5 Subunit Beta 
1) is associated with Hereditary Spastic Paraplegia [135].

Conclusions
Development of post-GWAS methods are important 
for characterizing the function of trait-associated loci 
[136]. Strategies integrating various biological data sets 
with GWAS results will provide insights into the mecha-
nistic role of associated loci. For example, an integrated 
GWAS and expression study on AR highlights mitochon-
drial pathways as a target for further investigation of AR 
mechanism and treatment [137].

We identified a total of 267 significantly asthma or AR 
–associating loci from 31 GWAS studies and 170 protein 
coding GWAS-level risk genes of asthma or AR. Of these 
about a third had airway epithelial functions in database 
and literature search. In addition, many genes have been 
related to immunity functions and in part to neuro-mus-
culoskeletal and other functions in literature. These func-
tions overlapped and also formed a strong network in 
pathway analyses. Still it is noteworthy that not all SNPs 
would be asthma markers themselves, or that each locus 
may lead to pathogenesis of AR or asthma. In addition, 
in about half of the protein coding genes the expression 
figures of databases was not yet available. Thus, further 
functional experiments would be needed to study their 
putative role in airways.

There is still scarce GWAS-level knowledge of CRS 
phenotype. After our GWAS catalogue search, a GWAS 
publication of Islandic and English CRS patients and con-
trols showed that a missense variant in ALOX15 causing 
p.Thr560Met alteration in arachidonate 15-lipoxygenase 
(15-LO) confers large genome-wide significant protection 
against CRSwNP and CRS. p.Thr560Met, carried by 1 in 
20 Europeans, was previously shown to cause near total 
loss of 15-LO enzymatic activity [138]. The authors sug-
gest that the protective effect of this variant is explained 
by inactivation of 15-LO´s catalytic activity, which leads 
to reduced production of pro-inflammatory mediators in 
eosinophils and nasal epithelium [138].

Since asthma and allergies are multifactorial disor-
ders affected by both genetic and environmental fac-
tors and with multiple phenotypes, it seems likely that 
several genes are involved, each with a minor effect. It 
is expected that different genetic pathways are involved 
with varying proportions in different populations. Aller-
gic diseases are also heterogeneous. Clinically, some 
patients have allergic rhinitis (AR) alone whereas others 
have AR and asthma (with or without other allergic man-
ifestations). Few patients have asthma alone. Using tran-
scriptomics analyses in European MeDALL birth cohorts 
and RNA sequencing in Puerto Rican children, AR as a 
single disease was found to be associated with Toll-like 
receptor gene expression (TLR), whereas rhinitis associ-
ated with asthma was linked with IL-5 and IL-33, con-
firming that the two diseases are different [139].
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We show that many risk genes relate to leukocyte 
immunity or epithelial cell functions. Approximately half 
the patients with asthma, regardless of the severity of 
the disease, and majority of AR cases, exhibit Th2 endo-
type [67]. This endotype is characterized by a predomi-
nant activation of Th2 cells that produce cytokines such 
as IL-4, -5, and -13 [67]. There is increasing evidence of 
airway barrier´s role in airway diseases, such as AR [17]. 
Although expression profiles in upper and lower airways 
might differ [140], investigations on nasal epithelial inter-
actions might provide additional knowledge for the lower 
airway inflammation [43, 141].

Therapeutic implications and future prospects
Since many of the identified risk genes for inflammatory 
airway diseases are airway epithelial or immunity func-
tion related, these functions should have an important 
role in the search for gene-environmental interactions, 
biomarkers and future therapeutics. Metabolism and 
neuro-musculoskeletal related functions also seem to 
have a central role in the development of asthma and AR.

With knowledge of important cascades in asthma and 
AR pathogenesis, as revealed also by these GWASs, it has 
been possible to develop medications that specifically 
target the key players of these cascades. In the 2010′s, 
biologics suppressing type 2 inflammation have become 
an important tool when tackling severe eosinophilic 
asthma, and recently also severe CRSwNP, and new sub-
stances are also under investigation [142].

Asthma endotypes can broadly be divided to type 2 
high or type 2 low asthma [143]. Type 2 endotype is 
defined by the presence of Th2- and ILC2- inflamma-
tory markers and eosinophilia. Type 2 low endotype is 
not as well defined; it is characterized by the absence of 
type 2 markers, and by activation of neutrophils, Th1 
and/or Th17 cells [143]. Some patients, often with severe 
asthma, have a mixed population of airway granulo-
cytes (eosinophils and neutrophils), and combined type 
2 high and low cytokine signatures, such as IL-17 or 
IFN-γ [144]. This heterogeneity could explain why fewer 
genome-scale asthma loci have been identified in type 2 
low asthma than in type 2 high asthma [143]. Lack of data 
also explains why molecules/pathways relevant to type 2 
low asthma were discussed less in this review. Neverthe-
less, there are several mucosal molecules/pathways that 
are currently under investigation as potential therapeu-
tic targets for type 2 low or mixed type of asthma, these 
include IL-6 [145] and TLR-3,4,7 [146].

After this study was performed, new GWASs and func-
tional annotation analysis have been published with new 
interesting asthma loci such as TNF receptor superfamily 
member 8 (TNFRSF8) [143], and Collagen Type XVI Alpha 
1 Chain (COL16A1) [147], and more studies are to come. 

This is indeed very important since further functional 
activity experiments of candidate genes are still needed 
to understand the dynamic molecular events behind the 
pathogenesis of airway diseases. In addition, there is a high 
need in the future to perform GWASs also on CRS, type 
2 low  asthma, chronic obstructive lung disease, and rare 
severe airway diseases, in order to broaden our under-
standing of all inflammatory airway disease subtypes and 
to discover new pathways/molecules. This knowledge 
would potentially improve future preventive and therapeu-
tic strategies for inflammatory airway diseases.
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